
                                       International Journal of Education and Science   Research  

                                                                                 Review                                   ISSN 2348-6457                        
                           Volume-1, Issue-5                                                                                      October- 2014                                          

                                        www.ijesrr.org                                                                         Email- editor@ijesrr.org 

www.ijesrr.org Page 18 

 

AI Based Classifiers-An Empirical Analysis 

 
Jabarweer Singh

 
, Gulshan Kumar

 
               Krishan Kumar 

Assistant professor               Associate professor 

SBS State Technical campus          SBS State Technical campus 

Ferozepur(Punjab)-India                Ferozepur(Punjab)-India  

 

 

ABSTRACT: 

Intrusion Detection Systems (IDS) are implemented over host sonnet work to categorize the activities taking 

place as normal or malevolent. The detection unit of IDS employs various methods for classification of these 

activities in to one of the five categories: Normal, Probe, DoS, User to root(U2R)and Remote to 

local(R2L).These techniques are mainly statistical techniques, knowledge based techniques or artificial 

intelligence(AI)based techniques.AI based classifiers are flexible, capable  of learning, adaptive and speedy, for 

these reasons AI based techniques are more appropriate for intrusion detection than conventional approaches. 

There is no existing critical analysis of AI based classifiers in literature to highlight promising classifiers for 

intrusion detection. The existing studies evaluated few classifiers by using either different bench mark data sets 

or different subsets of the data set. 

In this paper, first we study various AI based techniques. Then, we evaluate performance of these classifiers 

on the NSL-KDD data set and compare them empirically using various measures. We find promising classifiers 

for each class of instances present in the bench mark data set. 

 

Keywords–Intrusion Detection System, ensemble, combination, weighted voting, artificial intelligence. 

 

I. INTRODUCTION: 

Intrusion can be defined as any set of actions that attempt to compromise the security objectives [1]. These 

attempts have to be detected, so that necessary action could be taken. One method is to classify all of the 

activities into normal and attack. The classification of the network traffic in computer networks is done by using 

Intrusion Detection Systems. Intrusion Detection (ID) is the method of inspection of  the  events  taking  place  

on  a  system  or  network  and investigating them for intrusions, like non legitimate access, activity, or file 

manipulation. This includes three main courses of action: Monitoring and analyzing traffic; detection the 

intrusive activity; alarming the network administrator or taking some predefined actions. Intrusion Detection 

System (IDS) is software that computerizes the intrusion detection procedure and sense potential intrusions. 

Intrusion Detection Systems provide three crucial safety measures: they examine, detect, and react to illegal 

activity by insiders and outsiders of the network [2]. The network traffic is examined for distrustful activity and 

a signal is generated by the IDS. For examining the network, a huge amount of activity data is collected from 

the network generating large log files and raw network traffic data (in which human inspection is impossible) 

and then these activity data are compressed into high-level events, called attributes. Over it, a set of attributes is 

obtained and monitored by the IDS in order to detect intrusion attempts [1]. Intrusion Detection Systems can be 

classified into various types based upon different criteria. IDS can be classified based upon five criteria: Based 

upon information source (host based, network Based); Based upon Analysis strategy (anomaly detection, 

misuse detection); Based upon Time aspects (real-time prediction, offline prediction); Based upon Architecture 

(centralized, distributed); Based upon Response (active, passive) [3]. 
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The detection approach used is implemented in the brain of the IDS i.e. Detection and analysis unit [1]. The 

accuracy of classification of the network traffic by IDS depends upon the accuracy of the approach 

implemented in the detection and analysis unit. There are two primary approaches for analyzing events to detect 

attacks; namely misuse detection and anomaly detection. Misuse detection is based on extensive knowledge of 

known attacks and system vulnerabilities provided by human experts. The misuse detection approaches look for 

hackers that attempt to perform these attacks and/or to exploit known vulnerabilities. Although the misuse 

detection can be very accurate in detecting known attacks, misuse detection approaches cannot detect unknown 

and emerging cyber threats. Anomaly detection, on the other hand, is based on the analysis of profiles that 

represent normal behavior of users, hosts, or network connections. Anomaly detectors characterize normal 

legitimate computer activity using different techniques and then use a variety of measures to detect deviations 

from de-fined normal behavior as potential anomaly. The major benefit of anomaly detection algorithms is their 

ability to potentially recognize unforeseen attacks. However, the major limitation is potentially high false alarm 

rate. Note that deviations detected by anomaly detection algorithms may not necessarily represent actual 

attacks, as they may be new or unusual, but still legitimate, network behavior [3].The main types of techniques 

used in intrusion detection are statistical based techniques, knowledge based techniques and artificial 

intelligence based techniques etc. Ponce (2004) has listed several advantages of using AI based techniques over 

other approaches [4]. The major advantages include Flexibility; Adaptability; Pattern recognition; fast 

computing; high detection accuracy of new attacks. AIs can learn new rules automatically, whereas in 

traditional systems the security administrator must add new rules for each new attack type or each new allowed 

program. 

Most researchers used a single technique for the classifications of all five classes of traffic [5]. It is significant 

to query this method that attempts to recognize a single classifier that can detect instances of all five classes 

accurately. These five classes are: normal and other attack categories including DoS, Probing, R2L, and U2R, 

have noticeably exclusive execution dynamics and signatures, which motivates to find classifiers that are likely 

to exhibit superior performance for a given class type. Considering this option, we perform training and testing 

of a comprehensive set of machine learning algorithms and select best performing algorithms for each category 

present in the dataset. 

 

II. AI BASED TECHNIQUES APPLIED TOINTRUSION DETECTION 

In this section an overview of some major AI based techniques is given, in this work seventeen AI based 

classifiers evaluated, hence a brief introduction to those techniques is given: 

 

A. Bayesian classifiers  

1) Bayes Net: A Bayesian network (BN) consists of a directed acyclic graph G and a set P of probability 

distributions, where nodes and arcs in G stand for arbitrary variables and direct associations among variables 

correspondingly, and P is the set of local distributions for every node. A local distribution is usually specified 

by a conditional probability table (CPT). BNs are frequently used for the classification problem. In the 

classification learning problem, a learner tries to build a classifier from a certain set of labelled training 

instances that are characterized by a tuple of attribute variables used together to forecast the value of the class 

variable [6].  

 

2) Naive Bayes: The Nave Bayes classifier method is derived from the Bayesian theorem and is mainly 

appropriate when the dimensionality of inputs is large. It is an uncomplicated classifier but can frequently do 

better than more complex techniques. The Nave Bayesian classifier presents a straightforward approach, with 

comprehensible semantics, to represent, using, and learning probabilistic knowledge. The technique is designed 
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in support of supervised induction tasks, where the performance objective is to precisely forecast, the class of 

test instances and in which the training instances include class information. In a way, it is a specialized form of 

a Bayesian network. It is named nave for the reason that it relies on two hypotheses. It supposes that the 

predictive attributes are conditionally independent given the class, and it posits that no hidden or latent 

attributes manipulate the prediction procedure. These assumptions maintain very proficient algorithms for both 

classification and learning [7].  

 

B. Functions based classifiers  

1) SMO (Sequential Minimal Optimization): Sequential Minimal Optimization or SMO is an algorithm for 

training Support Vector Machines. Training a Support Vector Machine (SVM) needs the solution of a very big 

quadratic programming (QP) optimization problem. SMO splits this outsized QP problem into a chain of 

minimum achievable QP problems. These tiny QP problems are resolved rationally, which keeps away the need 

of using a time-consuming numerical QP optimization as an inner loop. The quantity of memory needed for 

SMO is linear in the training set size, which permits SMO to work with very huge training sets. SMO’s 

computation time is subjugated by SVM evaluation; hence SMO is best for linear SVMs and sparse data sets in 

terms of speed [8]. 

 

2) Simple logistic: Simple logistic is used for the construction of linear logistic regression models. Logit 

Boost with simple regression functions as base learners are used for fitting the logistic models. The optimal 

quantity of Logit Boost iterations to execute is cross-validated and automatic attribute selection is done. Firstly, 

Logit Boost is executed on the entire set of data to construct a logistic regression model for the root node. The 

number of iterations to be used is calculated by a fivefold cross-validation. In each fold, Logit Boost is run on 

the training set up to a maximum number of iterations (200). The number of iterations generating the minimum 

sum of errors on the test set over all five folds is used in Logi tBoost, for all the data to produce the model for 

the root node and is also used to build logistic regression models at all nodes in the tree and data are split by 

using C4.5 algorithm. Logistic regression models are then built at the child nodes on the corresponding subsets 

of the data using Logit Boost. As long as at least 15 instances are present at a node and a useful split is found, 

then splitting and model building is continued in the same fashion. The CART cross-validation-based pruning 

algorithm is applied to the tree [9]. 

 

3) MLP (Multilayer Perception): MLP uses back propagation for the purpose of classification of the 

examples. These networks can by generated by human, by algorithm or by using both approaches. At the time 

of their training these networks can be modified [10]. MLP is widely used in various pattern recognition 

problems. A MLP network consists of an input layer including a set of sensory nodes as input nodes, one or 

more hidden layers of computation nodes, and an output layer of computation nodes. Each interconnection has 

associated with it a scalar weight which is adjusted during the training phase. In addition, the back propagation 

learning algorithm is usually used to train a MLP, which are also called as back propagation neural networks. 

First of all, random weights are given at the beginning of training. Then, the algorithm performs weights tuning 

to define whatever hidden unit representation is most effective at minimizing the error of misclassification [11].  

 

4) RBF (Radial Basis Function) Network: Radial Basis Function (RBF) neural networks are extensively 

used category of feed forward neural networks. They carry out the classification by calculating the distances 

between the inputs and the centers of the RBF hidden neurons, this leads to higher speed far better than back-

propagation, and also they solve problems with large sample size more precisely [10]. RBF Networks are 

derived from the theory of function approximation, but they take a little unusual approach. They are two-layer 

feed-forward networks. The hidden nodes employ a set of radial basis functions (e.g. Gaussian functions). The 
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output nodes implement linear summation functions as in an MLP (Multilayer Perception). The network 

training is divided into two stages: first the weights from the input to hidden layer are determined, and then the 

weights of the hidden to output layer. The training/learning is very fast. The networks are very good at 

interpolation [12]. 

 

C. Lazy (Instance-based Learner)  

     1) IBK: Instance based K-nearest neighbors (IBK) use instance-based learning that generates classification 

predictions using only specific instances. Instance-based learning algorithms do not maintain a set of 

abstractions derived from specific instances. This is a K-nearest neighbor classifier. IBK can select appropriate 

value of K based on cross-validation, and distance weighting can also be done using IBK [13]. It works on the 

principle that first plot each training instance and then measure the distance of each test instance to the training 

instances. The class of the training instance with the least distance between it and the test instance is the class 

that we assign to the test instance. Basically k is chosen to be an odd number, and we take the smallest average 

distance of the k instances [14]. 

 

2) K Star: K Star is an instance-based learner which uses en-tropy as a distance measure. K* is an instance-

based classifier, that is the class of a test instance is based upon the class of those training instances similar to it, 

as determined by some similarity function. The underlying assumption of instance-based classifiers such as K*, 

IB1, PEBLS, etc., is that similar instances will have similar classes [15]. 

 

D. Miscellaneous: VFI (Voting Feature Intervals) 

This method is a new algorithm called VFI. A concept is represented by a set of feature intervals on each 

feature dimension separately. Each feature participates in the classification by distributing real-valued votes 

among classes. The class receiving the highest vote is declared to be the predicted class. VFI is compared with 

the Naive Bayesian Classifier, which also considers each feature separately. Experiments on real-world datasets 

show that VFI achieves comparably, and even better than NBC in terms of classification accuracy. Moreover, 

VFI is faster than NBC on all datasets [16]. 

 

E. Rule based  

1) J Rip: This class implements a propositional rule learner, Repeated Incremental Pruning to Produce Error 

Reduction (RIPPER), which was proposed by Cohen (1995) as an optimized version of IREP [17]. The 

algorithm is briefly described as follows as[18]: Initialize RS = , and for each class from the less prevalent one 

to the more frequent one, DO:  

Building stage: Repeat a and b until the description length (DL) of the ruleset and examples is 64 bits greater 

than the smallest DL met so far, or there are no positive examples, or the error rate ¿= 50 percent (a) Grow 

phase: Grow one rule by greedily adding antecedents (or conditions) to the rule, until the rule is perfect. The 

procedure tries every possible value of each attribute and selects the condition with highest information gain: p 

(log (p/t) -log (P/T)). (b) Prune phase: Incrementally prune each rule and allow the pruning of any final  

Sequences of the antecedents; The pruning metric is (p-n) / (p+n) – but it’s actually 2p/ (p+n) -1, so in this 

implementation we simply use p/ (p+n).  

Optimization stage: after generating the initial rule set Ri, generate and prune two variants of each rule Ri from 

randomized data using procedure a and b. But one variant is generated from an empty rule while the other is 

generated by greedily adding antecedents to the original rule. Moreover, the pruning metric used here is 

(TP+TN) / (P+N). Then the smallest possible DL for each variant and the original rule is computed. The variant 

with the minimal DL is selected as the final representative of Ri in the rule set. After all the rules in Ri have 

been examined and if there are still residual positives, more rules are generated based on the residual positives 
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using Building Stage again. 

Delete the rules from the rule set that would increase the DL of the whole rule et if it were in it and add resultant 

rule set to RS.  

END DO. 

2) PART: Frank et al. (1998) had shown how good rule sets can be learned one rule at a time, without any 

need for global optimization. They present an algorithm (PART) for inferring rules by repeatedly generating 

partial decision trees, thus combining the two major paradigms for rule generation: creating rules from decision 

trees and the separate-and-conquer rule-learning technique. The algorithm is straightforward and elegant, 

despite this, experiments on standard datasets show that it produces rule sets that are as accurate as and of 

similar size to those generated by C4.5, and more accurate than RIPPERs. Moreover, it operates efficiently, and 

because it avoids post processing, does not suffer the extremely slow performance on pathological example sets 

for which the C4.5 method has been criticized. It adopts the separate-and-conquer strategy in that it builds a 

rule, removes the instances it covers, and continues creating rules recursively for the remaining instances until 

none are left. In essence, to make a single rule a pruned decision tree is built for the current set of instances, the 

leaf with the largest coverage is made into a rule, and the tree is discarded. This avoids hasty generalization by 

only generalizing once the implications are known [19].  

 

3) Ridor (Ripple-Down Rules): Ripple down rules form a binary decision tree that differs from standard 

decision trees in that compound clause are used to determine branching, and these clauses need not exhaustively 

cover all cases so that it is possible for a decision to be reached at an interior node. This contrasts with standard 

trees where all decisions are made at root nodes. However, the feature of standard decision trees is retained that 

one, and only one, decision node is activated for each case. This makes maintenance simple because if the 

decision reach is erroneous then only node, and the past cases that have fallen under it, need be considered. It 

generates a default rule first and then the exceptions for the default rule with the least (weighted) error rate. 

Then it generates the “best” exceptions for each exception and iterates until pure. Thus it performs a tree-like 

expansion of exceptions. The exceptions are a set of rules that predict classes other than the default. IREP is 

used to generate the exceptions [20]. 

 

F. Decision Trees  

1) J48: The J48 Decision tree classifier follows the following simple algorithm. In order to classify a new item, 

it first needs to create a decision tree based on the attribute values of the available training data. So, whenever it 

encounters a set of items (training set) it identifies the attribute that discriminates the various instances most 

clearly. This feature that is able to tell us most about the data instances so that we can classify them the best is 

said to have the highest information gain. Now, among the possible values of this feature, if there is any value 

for which there is no ambiguity, that is, for which the data instances falling within its category have the same 

value for the target variable, then we terminate that branch and assign it to the target value that we have 

obtained. For the other cases, we then look for another attribute that gives us the highest information gain. 

Hence we continue in this manner until we either get a clear decision about what combination of attributes gives 

us a particular target value, or we run out of attributes. In the event that we run out of attributes, or if we cannot 

get an unambiguous result from the available information, we assign this branch a target value that the majorit y 

of the items under this branch possess. Now that we have the decision tree, we follow the order of attribute 

selection as we have obtained from the tree. By checking all the respective attributes and their values with those 

seen in the decision tree model, we can assign or predict the target value of this new instance [21]. 

 

2) LAD Tree (Logical Analysis of Data): Logical Analysis of Data is the method for classification proposed in 

optimization literature. It builds a classifier for binary target variable based on learning a logical expression that 
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can distinguish between positive and negative samples in a data set. The basic assumption of LAD model is that 

a binary point covered by some positive patterns, but not covered by any negative pattern is positive, and 

similarly, a binary point covered by some negative patterns, but not covered by positive pattern is negative. The 

construction of Lad model for a given data set typically involves the generation of large set patterns and the 

selection of a subset of them that satisfies the above assumption such that each pattern in the model satisfies 

certain requirements in terms of prevalence and homogeneity [22].  

 

3) Random Forest: Random Forests grow many classification trees. To classify a new object from an input 

vector, put the input vector down each of the trees in the forest. Each tree gives a classification, and we say the 

tree “votes” for that class. The forest chooses the classification having the most votes. Each tree is grown as 

follows: If the number of cases in the training set is N, sample N cases at random - but with replacement, from 

the original data. This sample will be the training set for growing the tree; if there are M input variables, a 

number m¡¡M is specified such that at each node, m variables are selected at random out of the M and the best 

split on this m is used to split the node. The value of m is held constant during the forest growing; each tree has 

grown to the largest extent possible. There is no pruning. It is unexcelled in accuracy among current algorithms. 

It can handle thousands of input variables without variable deletion. It generates an internal unbiased estimate 

of the generalization error as the forest building progresses. It computes proximities between pairs of cases that 

can be used in clustering, locating outliers or (by scaling) give interesting views of the data [23].  

 

4) REP Tree: A decision tree is a tool for carrying out classification of data instances input to it. Decision trees 

have production rules of the type IF THEN. Rep Tree is a fast decision tree learner and builds a 

decision/regression tree using information gain/variance reduction and prunes. It uses reduced-error pruning 

with back fitting, only sorts values for numeric attributes once. Since this a fast algorithm so the pruned tree 

reduces the complexity in the classification process. Moreover pruning is used to find the best sub-tree of the 

initially grown tree with the minimum error for the test set [14]. 

 

5) Simple Cart (Simple classification and regression tree):It builds both classification and regression trees. The 

classification tree construction by CART is based on binary splitting of the attributes. It uses gini index splitting 

measure in selecting the splitting attribute. Pruning is done in CART by using a portion of the training data set. 

CART uses both numeric and categorical attribute for building the decision tree and has inbuilt features that 

deal with missing attributes [22]. 

 

III. RELATED WORK 

Sabhnani et al. (2003) performed a simulation study to evaluate the performances of some machine learning 

algorithms on the KDD 1999 Cup intrusion detection dataset. They have evaluated Multilayer perceptron, 

Gaussian classifier (GAU), K-means clustering (K-M), nearest cluster algorithm (NEA), Incremental radial 

basis function, Leader algorithm (LEA), Hyper sphere algorithm (HYP), Fuzzy ARTMAP (Adaptive Resonance 

Theory mapping), and C4.5 decision tree. They demonstrated that for a given attack category certain classifier 

algorithms performed better. They evaluated that MLP, GAU, K-M, NEA, and RBF detected more than 85% of 

attack records for probing category and for attack records in DoS category, MLP, K-M, NEA, LEA, and HYP 

scored a 97% detection rate. GAU and K-M, the two most successful classifiers for U2R category, detected 

more than 22% of attack records. In case of R2L category, only GAU could detect around 10% of attack 

records. They have shown that MLP performs the best for probing, K-M for DoS as well as U2R, and GAU for 

R2L attack categories. As a result, they built a multi-classifier model using most promising classifiers for a 

given attack category that was evaluated for probing, denial-of-service, user-to-root, and remote-to-local attack 

categories. Their multi classifier system has shown precision of detection as follow: 0.887 for Probe instances, 
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0.973 for DoS instance, 0.298 for U2R instances and 0.096 for R2L instances. They reported that the machine 

learning algorithms working as classifiers for the KDD 1999 Cup data set cannot detect U2R and R2L attacks 

with sufficient accuracy within the misuse detection context [24]. 

Panda et al. (2008) evaluated three well known machine learning based classifiers namely ID3, J48 and Nave 

Bayes. They evaluated these classifiers based on the 10-fold cross validation test. They have also used the 

KDDCup99 IDS data set for all experiments. They evaluated the overall error rate of these classifiers and 

shown that Nave Bayes gave 3.56%, J48 gave 3.47% and ID3 gave 3.47% overall error rates. Their results 

illustrated that the Nave Bayes classifier is very interesting because of its simplicity, elegance, robustness and 

effectiveness. They also have shown that the decision trees have high efficiency in both generalization and 

detection of new attacks [25]. 

Tara pore et al. (2012) reviewed several AI based techniques used for the intrusion detection. They have 

evaluated Decision trees, back propagation neural networks, support vector ma-chine, hierarchical self-

organizing maps (SOM). They have compared the results of different authors who applied these techniques by 

using different data sets and platforms. They showed the key concept of each methodology, advantages and 

disadvantages of each approach, and the dataset(s) used. They reported that the R2L and U2R attack classes 

have low detection rates since there is less number of training instances [5]. 

 

IV. TOOL AND DATASET 

A. Tool: Weka (Waikato Environment for Knowledge Analysis) 

Simulation work for proposed Network Intrusion Detection System is done using WEKA. Weka is a collection 

of machine learning algorithms for data mining tasks. The algorithms can either be applied directly to a dataset 

or called from your own Java code. Weka contains tools for data pre-processing, classification, regression, 

clustering, association rules, and visualization. It is also well-suited for developing new machine learning 

schemes [26]. Weka contains tools for data pre-processing, classification, regression, clustering, association 

rules, and visualization. WEKA consists of an Explorer, Experimenter, Knowledge flow, Simple Command 

Line Interface, Java interface. 

The performance of the classifiers can be measured with the help of some performance metrics used in Weka. 

Consider the classifier classify the traffic into attack and normal (two classes only). Usually the performance of 

classifiers is measured by using confusion matrix and measures derived from the confusion matrix for n number 

of instances in the dataset. 

TP: Number of True positives (Attack traffic classified as Attack);  

FP: Number of False positives (Normal traffic classified as Attack);  

TN: Number of True Negatives (Normal traffic classified as Normal);  

FN: Number of False Negative (Attack traffic classified as Normal)  

 

Table I: Confusion Matrix 

 Predicted class Predicted class 

   

Actual Class Normal attack 

   

Normal TN FP 

   

Attack FN TP 

   

   

Other measures derived using confusion matrix are: Ac-curacy is how accurately a classifier (Technique) 
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classifies instances; True Positive Rate (TPR) or Sensitivity or recall is the how well the classifier classifies the 

positive instances; False Positive Rate (FPR) rate of negative instances are inaccurately classified by the 

classifier; Precision is the probability of correctness of a positive prediction; F-measure c is the harmonic mean 

of precision and recall and can be used as a single measure of performance.; Receiver Operating Characteristics 

(ROC) graphs have long been used in signal detection theoryto depict the trade-off between hit rates and false 

alarm rates over noisy channel. 

  

Accuracy = 

TP + TN  

(1) 

 

     

n 

 

         

  

Sensitivity = 

   TP 

(2) 

 

          

    TP + FN  

  

False Alarm = 

FP 

(3) 

 

    

 

 

  

TN + 

TP  

  

Precision = 

   TP 

(4) 

 

      

  TP + FP  

F 

 

measure = 

2  precision  recall 

(5) 

 

precision + recall 

 

    

 

 

B. Dataset: NSL-KDD 

Knowledge Discovery and Data Mining Competition - KDD Cup 99 is the data set used for The Third 

International Knowledge Discovery and Data Mining Tools Competition, which was held in conjunction with 

KDD-99 the Fifth International Conference on Knowledge Discovery and Data Mining. The raw training data 

was about four gigabytes of compressed binary TCP dump data from seven weeks of network traffic. This was 

processed into about five million connection records. Similarly, the two weeks of test data yielded around two 

million connection records. A connection is a sequence of TCP packets starting and ending at some well-

defined times, between which data flows to and from a source IP address to a target IP address under some 

well-defined protocol. Each connection is labelled as either normal, or as an attack, with exactly one specific 

attack type. Each connection record consists of about 100 bytes. 

 

In the KDD99 database, any network connection (or in-stance) is comprised of 41 attributes and each instance is 

labelled either as normal or as an attack-specified type. In KDD99 database, there are 4,898,430 labelled and 

311,029 unlabeled connection records in the dataset. The labelled connection records consist of 22 different 

attack types categorized into 04 classes namely (DoS: denial of service, Probe, U2R: user to root, R2l: Remote 

to local)[?].Whereas unlabeled dataset consists of 20 known and 17 unknown attacks. The labelled dataset is 

used for training and unlabeled dataset is used for testing of the classifiers. The 17 unknown attacks used for 

testing helps in determining accuracy of the classifiers for unknown attacks. It is clear that total number of 

connection records to be used for training and testing of the classifiers is very large and also the number of 

connection records related to U2R and R2L is very less as compared to other attack classes. Moreover, KDD99 

is built based on the data captured in DARPA98 which has been criticized by McHugh (2000), mainly because 

of the characteristics of the synthetic data. As a result, some of the existing problems in DARPA98 remain in 
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KDD99 [27]. 

Due to shortcomings and large number of records on which test was very difficult to perform Tavallace et al. 

(2009) included 125,973 and 22,544 records in a training dataset and test dataset respectively by randomly 

selecting connections from KDD99 dataset. They named this dataset NSL-KDD [28]. Further, in order to reduce 

non-uniformity in the dataset, we randomly selected maximum of 10,000 connection records of each attack type 

from labelled dataset for the purpose of training the classifiers in an unbiased manner. Total 66,961 (including 

normal) connection records are selected from entire labelled KDD dataset for training of classifiers. In order to 

test the classifiers, we randomly selected 5000 connection records of all attack types from unlabeled dataset. 

There are 40,603 connection records in the test dataset [29]. 

 

For using the dataset in training and testing purposes we must first pre-process the dataset. The pre-processing 

includes two phases: 1) Mapping of symbolic value features to numeric value; 2) Normalization of continuous 

features. We have done the pre-processing as suggested by Gulshan et al.(2010) as follow: 1) Symbolic features 

like protocol type, (3 different symbols), service (70 different symbols), and flag (11 different symbols) were 

mapped to integer values ranging from 0 to N-1 where N is the number of symbols; 2) The attack type feature is 

mapped to one of attack class namely Probe, DoS, U2R and R2L; 3) The normalization of continuous features is 

done as per equation shown below: 

Normalized Valuei = normalize(ln(vali + 1)) (6) 

 

 

      

      

  

xiln(Mini + 1) 

 

(7) 

 

Normalize(Xi) = 

   

ln(Maxi + 1)   ln(Mini + 1) 

 

   

   

 

V. EXPERIMENT RESULTS AND ANALYSIS 

In our experiments we have trained and tested seventeen AI classifiers. The training dataset consists of 37791 

instances containing 12533 labelled Normal instances, 11656 labelled Probe instances, 12555 labelled DoS 

instances, 52 U2R in-stances and 995 R2L instances. Our test dataset consists of 6763 instances containing 

1609 unlabeled Normal instances, 1607 unlabeled Probe instances, 1628 unlabeled DoS in-stances, 200 

unlabeled U2R instances and 1719 unlabeled R2L instances. All experiments are performed using Weka 3.6.8 

with 10-fold cross validation, 32 bit Windows XP platform, 2GB RAM, Intel core 2 Duo CPU, 2.00 GHz 

processor. The following figures show the results of experiments. We have calculated four performance metrics 

of various AI based classifiers for all class types. 

 

The first metric is True Positive Rate (TPR) of seventeen AI based classifiers for different classes. Figure 4.1 

depicts that RandomForest (0.97) have the highest TPR for Normal class followed by JRip, also JRip (0.863) 

have a highest TPR for DoS class. For the detection of Probe class, U2R class and R2L class Naive Bayes have 

highest TPRs which are 0.944, 0.275, and 0.501 respectively. Our second performance metric for comparison is 

False Positive Rate (FPR). Figure 4.2 illustrates the FPRs of tested classifiers for all attack classes. The 

classifier having lower FPR is better (low FPR=low false alarm). 
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                                            Fig. 1.  TPR of classifiers for different attack classes 

Naive Bayes (0.215) has lowest FPR for Normal type instances. JRip (0.013) and RBFnetwork (0.006) have 
lowest FPRs for Probe and DoS type instances respectively. In case of U2R instances every classifier shown low 
FPR but detection is also very low as seen in Figure 4.1. Jrip and REPtree have shown values of FPR near to zero 
for R2L class. 
 

 

 

 

 

 

 

 

 

 

 

                                             Fig. 2.  FPR of classifiers for different attack classes 

 

The third metric used for comparison is the F - measure which is very precise as it includes the precision and 

recall values in its calculation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                      Fig. 3.  F-Measure of classifiers for different attack classes 



International Journal of Education and Science Research Review  

    Volume-1, Issue-5 October- 2014           ISSN 2348-6457 
                    www.ijesrr.org                                                          Email- editor@ijesrr.org 

www.ijesrr.org Page 28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                   

 

Fig. 4.  ROC area of classifiers for different attack classes 

 

On the basis of F-measure (as shown in Figure 4.3) the promising classifiers are: Naive Bayes for Normal 

(0.708), Probe (0.898) and R2L (0.634), JRip for DoS (0.887), BayesNet for U2R (0.271) class. Last metric we 

have used is ROC area which is also a common metric used for comparison of classifiers. The promising 

classifiers based upon the ROC area (Figure 4.4) are: Naive Bayes for Normal (0.955), Probe (0.967) and R2L 

(0.949); KStar for DoS (0.953) and J48 for U2R (0.813). 

 

 

VI. CONCLUSION 

AI based classifiers are highly suitable when used for Intrusion detection. They have learning capabilities which 

make them highly robust. Moreover these classifiers are very fast hence providing real time detection. We have 

analyzed performance of seventeen AI based classifiers for different class type instances. In our experiments we 

concluded that the Naive Bayes classifier is very suitable for intrusion detection, because of its high detection 

accuracy. For detection of Normal and Probe type class Naive Bayes performed best among the tested 

classifiers but it showed low performance for DoS type instances. JRip and SMO have shown good 

performances in detection of DoS class type instances. The training set contain very low number of U2R 

instances hence all classifiers have shown low detection rates for U2R type instances but Naive bayes and 

Bayes Net performed better than other classifiers for this class type. R2L instances were best classified using 

Naive Bayes and RE Ptree. 

 

During our experiments we have seen that no single classifier is able to generate detection accuracy to an 

acceptance level. Different classifiers perform better for detection of a different class; hence more than one 

classifier should be combined to detect intrusions. Our future work will include combining these promising 

classifiers to build a multiple classifier system which uses strength of each classifier and tends to achieve 

detection accuracy to an acceptance level. 
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